In the late 1960s, IBM secretly formed a small team of people to develop a computer for home users long before Apple began work on the Apple 2s, or Commodore started the C64 project. Their idea was a simple one: create an affordable, compact, quiet, and generally non-obtrusive computer that consumers could purchase at any electronics store, set up easily, and use with appliances they already own, such as TVs or turntables; which ultimately failed before ever hitting production. Despite their great efforts over many years, this project never succeeded as based on its original criteria, but eventually formed into the IBM XT computer. Some sources claim that all the hardware and documentation from this project was destroyed, but if you look long and hard you can find much of the subject matter I will display for you here, minus the witty comments.
It started with a simple PC design, using the Intel 8084 processor, which preceded the very popular Intel 8088 processor, running at 400 KHz, or almost half a Megahertz. For temporary storage, it used a static RAM system compiled of many logic gates put through switching loops, capable of holding nearly eight thousand bits of data, each bit being capable of actually being one of four bit states, allow for actually thirty-two thousand bits of data. For long-term storage, and software deployment, there were two options- VSO and TCOS. VSO, or vinyl system of operations, was a simple system targeted towards the home and small business user. It consisted of four double-sided vinyl disks, very similar to music records. These "disks" contained the entire VSO, and had to be loaded every time the user started the computer. TCOS, or Tape-based Computer Operating System, was never actually created. To my knowledge, this system was never given a codename or any kind of model number, so from here on out it will be referred to simply as “the computer.”
While TCOS and VSO are the same in principal, TCOS was originally geared towards much higher end users, and because (most of) these users were already working with IBM’s mainframe systems, which also already had a similar tape based storage system, they canceled the project. VSO, however, because it was actually developed and produced (to an extent) is much more interesting. The idea was that you could put data on a record in the form of “audio” on a record, and have it play through a record player and directly into the computer’s RAM. The audio on the record was very simple, time was broken into quarter-second parts, and each part was capable of being one of four bit-stages. This basically meant that instead of a byte being 8 bits, a byte only had to be two bits for the same ammount of data. Meaning that you could get a lot more out of less ram, because you essentially split each potential bit in half. No commercial application records were ever made, however IBM did create three “demo” type records. Catalogs of the contents of these records have never been disclosed, though it is assumed that they contain things like sound and video demos, as well as sample applications. Documentation records were also produced, and were originally going to go along with VSO v1 in place of paper documentation. A simple operating system and file viewer was on the records to allow you to view the contents without fully booting the system, meaning you could create your own paper manuals if you wanted to.
The turntable, connected to the computer via a mono cable, (typically RCA) and the user would start it, beginning the data flow from the vinyl to the RAM. To start the bootstrapping (operating system loading) process, the computer would be booted and display an OK symbol with an asterisk. The user then loads the record onto the turntable and checks the speed. When it is started, the first few grooves on the record will be all a single bit stage (zero) to be sure that there are no misalignment errors. It would then load ten seconds worth (forty-bit states) of data. The first eight would be in a simple pattern, 0, 0.25, 0.50, 1, 1, 0.50, 0.25, 0, and are referred to as the “loader bits.” The other eight seconds would be a pattern reflecting what the data on the current record held, mostly so the user could know that they loaded the correct disk, also as a test that the computer was able to read bit states properly, much like a link test. However, it is impossible for the computer to know what record comes when; it is up to the user to get the order and timing right. Despite its use of a vinyl system to read-in data, the computer is unable to, and will not attempt to read audio data from a vinyl record album. The computer looks for the eight bit stages upon loading a disc, and won’t continue if it cannot find them.
 The bit stages are hardware set with DIP switches on the main system board, and the way it works is that when you first load the record, the loader bits play from the audio to data decoder and file through the DIP switch’s set path, much like a key turning in a lock. If all the bits move through the paths unobstructed, they’ll trigger a chain reaction of logic gate switching and relays that redirect the data flow from the decoder to the switches to the decoder directly into the RAM. This has to happen in a split second, or else the rest of the bootstrap, which is still playing over the record, will not be loaded into the ram, so when the execute bit is run after the initial loading sequence is finished, it will not properly show the loading message. However, the rest of the record should load into RAM without issue, since it does not rely on the bootstrap message. In fact, it has no error checking at all. Even after you load all eight sides, you will get no error messages. However, a nifty feature was added to the end of the disks to make the loading process much easier. It was five seconds of data, or twenty bit-states that contained a small amount of data that did two things. First it would load a simple program with an execute and delete (meaning it would run the program, then remove it from RAM) code on the end of it that would display another asterisk on the screen, and then cause the speaker to beep. This is the only known cause for a speaker in this system. Originally, the plan was just to have it display another asterisk, but the developers decided that having it beep as well would catch the users’ attention, especially considering loading each record could take a very long time. The second bit of data in those last five seconds was another execute and delete program that would switch the relays and logic gates back to their original positions, so that when the next record was played in, its first eight bit states also had to pass through the DIP switches, this was so that you after loading the first several records you didn’t accidentally load Michael Jackson’s Thriller in instead of your text editor.
After each of the records for the operating system was loaded into the RAM, the computer would run a series of execute bits, and the initial programs would be run, prompting the user to enter the date, time, their name, what type of printer is connected, etc. There were several programs included with VSO that people could use so that they didn’t have to load even more records after the initial few. There was a word processor, very similar to vi, and a spreadsheet/database program, a calculator, and a vector graphics program. The word processor was very powerful, it was capable of using several different fonts and text sizes at once, and you could load a vector graphic (such as a bar chart) from your vector graphics program into your document. This, however, consumed a lot of RAM, and did not always work.
One major downside to this system (and quite possibly why it failed in the first place) is the fact that it was impossible to save files. When you were finished working on a paper, or had to stop writing for a while, you had to either print it, or turn the computer off. If the user didn’t have a printer, their computer was pretty much useless. Toward the end of the life of this project, and as 8” floppies were gaining use, IBM was working on an interesting method for saving data. They developed an interesting printer-looking device that had a head with two things on it, a stamp and a sensor.

 For saving data, the stamp would put each bit into a four-square configuration. The top left corner would be the 0 bit-state, the top right would be the 0.25 bit-state, bottom left would be 0.50, and bottom right would be 1. Each square was one millimeter on each side, making the group of four be a 4mm by 4mm square, and only one corner per square can be filled in. A square with a 0 and a 1 corner filled in would cause the system to error and reset. To read the data, a light would be shown under the paper, and the sensor would go to each square and read what areas were filled in, and what weren’t. The machine would then convert this data into an audio signal, and would be played into the computer in the same way data from a record would come in. This system was known as ODSS, or Optical Data Storage System, and it is unknown how much data each page could hold.
Another interesting technology that IBM and several large businesses were working on was a sort of lab system. You could have a room filled with fifteen or so of these systems, all connected via two mono cables to a server. The cards were to have dedicated processors and RAM to boost throughput to around 25 baud, over the single bit per second the record data could do. The central server would have enhanced RAM, either double or quadruple times what the standard systems would have, as well as tape storage and multiple record players connected to it, as well as many of the same cards that the systems have, so that each system can be connected to the server. The idea was that one person in the lab could be running a program or retrieving data that was stored on records or tape storage systems connected to the server, while another machine was booting up off the VSO record connected to the main server. To speed the boot process, the administrator could go ahead and load VSO into the server’s RAM (the server would be running Its own OS, possibly TCOS) and then clients could boot off it, at full 25 baud. However, Ethernet and other networking standards quickly dominated the interconnected computing world, so this never got anywhere.

There were also designs written up for a switch that would use this type of system, but instead of being only client-server, they would be client-client. This means that two coworkers could share a file, or use a collaborative editor to allow them to edit a single file at the same time. They would all connect to a central “switch,” and before sending any data they would send a sort of preamble that told the switch “OK, PC3 is connected to Port1, and is sending data to PC5 which is on Port2; make a link between ports 1 and 5.” They could then send data. Again, Ethernet networks became available before the audio-networking developed.

For graphical output, there were two options. Composite out, which would run through a VCR to a TV, or UHF out, which would output to a cable that you connected to your televisions antenna connectors, and tune to channel six to use. It is believed that the Composite out is really just a card that contains a modulator and filters to output a cleaner signal. Full resolution was 600 by 400 pixels, four greys and supposedly two colors, red and blue. It’s unknown why these colors were there in the first place, but it probably has something to do with being typewriter-esque.
 Using the keyboard was the primary form of user data input. It was a very small keyboard, in qwerty format with no non letter/number keys at all other than the space bar, shift, tab, and enter. However, there were function keys along the top of the keyboard that allowed each key to take on two or three (or more) other functions. This was done to keep the keyboard extremely compact, however the function keys were non-toggling, so you had to hold them down whever you wanted to use, say, arrow keys, or a caps lock. (which entirely defeated the point of caps lock)
The other form of user input was a light pen of sorts, more of a ray gun though. It connected to the computer with a large 32 pin connector. It was about an inch around and around ten inches long with the cable coming out the bottom. There was a plethora of buttons on it, probably for mimicking function keys for graphics applications. It was meant to be used with the vector graphics application, however it had terribly low resolution sensors in it, so unless you had a 40” or larger screen, it would jumble all the points together and cause the program to crash. It’s an odd thing that a device like this ever came to be, especially considering this computer was never supposed to be a graphics based workstation. No mice or keyboards were ever developed, only the keyboard and light pen.
The case of the system was that of a mini-tower, two and a half feet tall, two feet deep, and about eight inches wide. It was made of heavy stamped steel, with no drive bays at all. The front was completely plain except for a power switch and light, which was a standard flashlight bulb, behind a green diffuser. The powersupply was only made in a 110v variant, and was approx 600 watts. Most of the insides of the case were taken up by boards, no wires at all. Everything was socketed together. The mainboard was covered in chips and transistors, and had eight slots. The bottom six were all very wide, and packed with cards with logic gates used for the temporary data storage. The two slots went unused, but were for the audio networking card and video out modulator, which were never developed. Ports wise it was pretty slim: power, keyboard, light pen, audio in, and a DB11 connector probably used for the printers. The keyboard used two rows of eight pins, too small for ASCII so it was probably some proprietary setup. Between the slots and the ports was a large grille, eight inches tall by eight inches wide, and behind that was a fan by the same specifications. It was AC powered, and moved enormous amounts of air, all while moving slowly and staying silent. There was only one vent for air to flow in, under the front. This forced air to move in through the front and then up over the temporary data storage area, which would have generated the most heat. It had a single blue IBM badge on it, but no model numbers or specifications.
�It’s really very informal.

